Showing posts with label fraud. Show all posts
Showing posts with label fraud. Show all posts

Sunday, 27 December 2009

Nuclear Fusion and the Road to Hell

burning candleThe running joke in the nuclear fusion community is that commercial fusion is thirty or forty years away ... and always will be. The "forty years" rule isn't based on any technical issues, it's based on politics. If you say "a hundred years", then no politician is going to fund you. They want to see results in their lifetime. If you say "twenty years", then people expect you to already have prototype plans drawn up. If you say "thirty", then you get a ten-year grace period, and THEN people expect to start seeing blueprints. "Fifty years" doesn't have enough urgency ... the economy might be different in five decades. And it sounds like a made-up number. But "forty years" conveys a sense that we need to get started NOW. It dangles the carrot just far away for a politician to hope that they're doing the right thing, it won't come to fruition on their career, but they'll see the results in their lifetime.
Which, of course doesn't happen, but by then we have a new crop of politicians that we can give the "forty" schtick to.

So "forty years" is an ongoing collective collective sales pitch by the fusion community to get money for their big conventional tokamak projects from their respective governments. The guys involved sincerely believe that fusion power is the future of the human species, and that the system WILL work one day, and that it HAS to be funded for us to progress. They seem to be using the "tobacco industry" principle – that if you testify that you believe that something is correct, then as long as you can force yourself to believe it at that particular moment, it's difficult for anyone to call you to account for lying. The unattributed quote in the New Scientist editorial after the funding round in 2006, when someone was asked whether they honestly believed the estimates being given for timescales by the fusion community was: "We have to, or the politicians wouldn't give us the money".

The tokamak guys probably reckon that this doesn't technically count as scientific fraud, because they're only misleading politicians, and not other scientists. It's just gaming the system, nobody's getting hurt, right? And anything that gets additional money for science is good, yes?

And that's where the rot sets in. Because "big tokamak" research is so damned expensive, it means that once you've started, you're committed. To spend years of your life on a project and billions of dollars and THEN have it cancelled would be worse than not having started. So you find yourself in a "double or quits" situation, where you have to keep the lie going, and find yourself having to do other bad things to protect the structure you've built.
It basically has you by the balls.

There's quite a few other potential ways to do nuclear fusion, and although lots of them look flakier than the idea of using a nice big solid tokamak, they're also a hell of a lot cheaper to research. So you'd think that the sensible course of action woudl be to put a little money into those alternatives as a side bet, in case the "big toroidal tokamak" idea doesn't pan out, or in case one of those cheap ideas suddenly starts working.

But if you're a "BTT" guy, the side-projects can't be allowed conventional funding or credibility. That's why, when the Cold Fusion story hit, those involved were immediately being written off as con-artists or delusional incompetents by people who knew nothing about palladium-hydrogen geometries – the threat wasn't that the CF guys might successfully con a measly five or ten million in funding from the government, it was that governments might start considering a "mixed basket" approach to fusion research, and if you have five cheap fusion research programmes and one very expensive one, the temptation is to drop the one that costs so much more when funding gets tight. So once you're chasing Big Fusion, it becomes imperative for the success of your mission that there are no other options for a funding committee to look at. Ideally, you want all that other research stopped.

This is the road to damnation. You wake up one day and find that you're no longer the heroic researcher battling the corrupt political system to save a project from cancellation – you're now part of the corrupt political system suppressing other people's fusion research. And it's not the politicians at fault - it's you. Somewhere along the line, you morphed from Anakin Skywalker to Darth Vader, and became one of the Bad Guys.
The only way to justify your actions – and save your scientific soul – is to come up with the goods and save humanity. But this means that you can no longer consider even the possibility that the BTT approach might not be the right way to go, because that'd mean that you'd lose your one shot at salvation.
So what happens if one day you realise that there's something your colleagues overlooked that seems to make the entire project unworkable? Do you go public and risk being responsible for shutting down everything you and your colleagues have devoted your careers to, or do you keep quiet in the hope that you're wrong? If you decided to go public, how far might some of your colleagues go to stop you? Things get nasty.
This is why we have stories about people selling their souls to the devil, and finding out, too late, that they've killed the very thing they wanted to save. They're cautionary tales about human nature and temptation that are supposed to help us to do the right thing in these situations.


The fusion guys have been getting away with it so far, because we all hope that they'll actually be able to come up with the goods. But the public is getting increasingly sceptical about how far they can trust scientists, and the fusion community has to take it's share of the blame for that.

Let's suppose that the global warming argument is correct, and that in 15-20 years time the Earth's weather systems shift in a way that's not terribly convenient for our current city locations, or that we end up bankrupting ourselves in a last-ditch attempt to cut down on carbon emissions. Who're we going to blame?
The climate change people will blame the politicians for not listening to the scientists and planning ahead ... but the politicians will be able to say that they did take the best available scientific advice, and did plan ahead. And spent the money on the big fusion programmes. They didn't properly fund development of next-generation fission reactors that'd be more palatable to the general public than the current monsters, because they were told that fission reactors would be obsolete by now. They didn't do more to fund clean coal, because our power stations weren't still supposed to be burning fossil fuels past the end of the Twentieth Century. They didn't do more to fund wave and wind and solar power research, or try to make society more energy-efficient, because by now we were supposed to be enjoying practially unlimited energy "too cheap to meter". The concentration of strategic oil reserves in Middle-Eastern countries like Iraq and Iran wouldn't matter so much by now, certainly not so much that we'd be prepared to go to war over them. The forty-year estimates back in the 1960's meant that we simply didn't need to prioritise these things. The fusion guys had assured us that we didn't need to, all we had to do was write them a cheque.

Like most people, I hope that the guys can show us that we're wrong, and really can get this to work on a reasonable timescale.

Otherwise ... Welcome to Hell.

Sunday, 12 July 2009

Remembering Emil Rupp

In the "impossible diamond" post, when I was talking about the impression given by C20th physicists had that fraud didn't happen in their profession, I forgot about Emil Rupp. Then again, almost everyone tends to forget about Emil Rupp.

Emil Rupp (1898-1979) studied under Nobel-prizewinning experimenter Philipp Lenard, and was considered by some to be one of the most exciting experimenters of his time. He did a series of experiments related to effects like electron diffraction that caught the imaginations of a number of key theoretical physicists, and his work was sometimes credited with being one of the most important influences on the development of quantum mechanics.

Rupp's work was central to some key questions in quantum mechanics. What is reality? is light really a wave or a particle? Is it emitted continuously or instantaneously? Can a state that is said not to exist still influence the outcome of an experiment?

Ironically, it then turned out that Rupp's own experiments, which had been so influential, didn't seem to have existed either. The thing supposedly came to light when some of his colleagues visited the lab where Rupp was working and confronted Rupp – he'd been describing experiments with 500kV electrons, but wasn't in possession of an accelerator that went up to 500kV. He'd been making up his experimental results.

Why did Rupp do it? Well, like Bernie Madhoff, for a while he was getting away with it, and was having a very, very good time. He was identifying problems that the physics community wanted solving, and solving them (albeit with fake experimental writeups). He was an enabler, and people (other than the fellow experimenters that he kept leapfrogging) liked him for it. Great names in theoretical physics would seek him out and cite him. Einstein spent quality time corresponding with Rupp in 1926, working through issues with wave-particle duality, and trying to work out what should happen in certain experiments ... and trying to come up with explanations for how it was that some of Rupp's experiments had come out so well, given some of the difficulties that he should have come up against. The collaboration was reasonably well-known, and people started referring to the "Einstein-Rupp experiments".

When the game was up, Rupp found that he'd now given the physics community a new headache. He'd shown that peer review didn't work as an efficient way of identifying "friendly" fraud within the system. If you had the right background, and you worked out which results people wanted and published those results, your paper tended to pass peer review unless the referees were so convinced that you couldn't possibly have gotten those results that they called you on it. And if an experiment produced the expected result, it was difficult for a referee to insist that an experiment was too successful. Results that don't agree with current thinking can be summarily rejected by peer review on the grounds that getting a "wrong" answer amounts to apparent evidence of error, but rejecting results that give the "right" answer is more awkward.
The lesson seemed to be that if you wanted a career as a scientific fraudster, the way to succeed was to agree with whichever theories were currently in vogue. So the physics community was now facing a potential upheaval – how would they assess how many other key papers by respected researchers might have been unreliable, or even outright fakes?

Rupp solved that problem for them with another piece of documentation. He sent a retraction of his five key papers, along with a letter from his doctor stating that Rupp had been in a "dreamlike" mental state when he'd written them.
It was a tidy conclusion – Rupp exited physics without there having to be a nasty inquiry, the community got to draw a line under the affair, quickly, and thanks to Rupp's explanation, they got to write off the matter not as an extended period of fraud lasting nine or ten years, but as the unfortunate actions of a guy who was having some mental health issues. That let the community off the hook – if Rupp hadn't been completely sane at the time, then we could still tell ourselves that physics was a special "fraud-free" field of science, and that no sane physicist would ever commit fraud. So everything was okay again.

Was Rupp's doctor's letter genuine? We didn't really care. We had the result that we wanted.


Refs:

Saturday, 27 June 2009

Physics Fraud, and the Impossible Diamond


Physicists used to tell me was that physics was a special subject, because you never had to worry about the possibility of fraud. Their reasoning was that You Can't Fake Physics. If you make up an experimental result that isn't right, you're doomed to be found out when other people try the same experiment and can't replicate your result. It's a dumb thing to do, and no physicist would ever be stupid enough to try.

However, it might be more accurate to say that perhaps no sane physicist would try to fake a result that they believed to be wrong. Faking a correct result may be cheating, but doesn't carry the same risk. It's much more difficult to spot a fake result when it agrees with everyone else's results and with what everybody expects to happen.

We can sometimes spot a "false positive" when a theoretical prediction that is successfully verified later turns out to be wrong, or when an experimental technique later turns out to be impossible, or impossible to conduct to the claimed accuracy. When this happens in an experiment that contradicts current theory, we usually rip the person responsible to shreds, and accusations start flying of scientific fraud. When it happens in an experiment that agrees with current theory, we're usually more charitable, and tend to say that perhaps the experimenter was simply mistaken, or overcome with a little too much enthusiasm. There's such a large grey area for honest mistakes, or the unconscious selection of "good" data (or simple wishful thinking) that a certain amount of bad science probably slips under the radar without being spotted, and it's not often that we find a "bad" result supporting a "good" outcome that's really so profoundly impossible that people are forced to consider using the "f" word.



One candidate case happened in 1955.
Researchers had been wanting to create artificial diamonds since at least as far back as Nineteenth Century. When H.G. Wells published his short story "The Diamond Maker" in 1894, a number of researchers had already been trying approaches with varying degrees of optimism and claiming positive results, including James Ballantyne Hannay in 1880, and Nobel Prize-winner Henri Moissan (also in 1894). One of the wildest attempts to create artificial diamond was carried out by John Logie Baird, who briefly blacked out of part of Glasgow when he deliberately short-circuited an electricity substation's power terminals across a graphite rod embedded in reinforced concrete (the story goes that he couldn't work out how to get the thing open afterwards, and it ended up at the bottom of a river, unexamined).

The potential financial payoff for anyone able to create artificial diamonds on demand was obvious, and by the 1950's there had been more reported (but often disputed) successes, and competing researchers were trying desperately hard to be the first people to produce a proper, replicable, accepted process that definitely did produce diamonds. One team in particular figured that they were on the edge of actually achieving it. They had the theory right, they had the equipment right ... the only problem was that their pressure-vessel obstinately refused to cough up any diamonds.
It was desperately unfair. They'd done all the work correctly, and the experiment refused to come out the way it was supposed to. They needed a diamond to get further funding. From their perspective, they probably reckoned that they deserved a diamond. It was necessary for their future research. Science needed a diamond!

And a diamond dutifully appeared. They got new funding, bought new equipment and replicated the result, others managed the same thing, and everyone was happy.

Except that ... someone went back and checked the calibration on the original pressure reactor and found that its readings had been significantly "off". The pressure-vessel had been running at too low a pressure for diamond to form. With hindsight, their original artificial diamond seemed to have been a physical impossibility. So how did it get there?

Three of the four original team members put their names to a letter to Nature in 1993, explaining that subsequent spectral analysis of the "run 151" diamond years later had shown that it appeared to have the characteristics of a natural gemstone rather than those of an artificial rock. The experimenters had carried a small stock of natural diamonds for research purposes, and it seemed that one of those had somehow found its way into the pressure vessel during setup, and been "fortuitously" discovered after the experiment.

It's quite a nicely- and elegantly-written letter, but the authors must have been acutely aware that to most people, the idea that one might "accidentally" lose a real diamond inside an apparatus designed to create artificial diamond, in such a way that it could then be rediscovered and used to get further desperately-needed money ... if this happened in any other field, we'd tend to assume deliberate fraud.



Another thing that might surprise some outsiders is that although the announcement that the experiment had been a success was made in 1955, the retraction didn't happen until 1993, nearly forty years later. For Twentieth-Century experimental physics, this wasn't actually all that unusual – there seemed to be an unspoken "gentlemen's agreement" that if someone had claimed a "correct" result that they shouldn't have, that the community would hold off making too many pointed suggestions in print until some time after the person concerned was safely dead. This was probably a great way of avoiding public controversies, but it also meant that we never really got to the bottom of what had happened in many of these cases. If you weren't supposed to go public while someone was still alive, but you couldn't suggest fraud after they were dead (because it was unfair to level that sort of accusation at someone when they couldn't defend themselves), then it meant that anyone who did get up to no good had a decent chance of not being publicly outed, in print, ever. By the time a critical report could be written, the people with first-hand knowledge of what had really happened might have all died off.

By avoiding investigating these cases until after it was too late to reach a conclusion, the physics community probably did manage to achieve a nominal "no confirmed mainstream fraud" result. But that result was itself not especially honest.

Things are now looking up. Berkeley recently went public very quickly about problems with the work of two physicists (in two separate cases) who seemed to have been almost routinely fabricating data to get their "world-class" results (Victor Ninov and Jan Hendrik Schön), and there've now been a few more speedy "outings" of scientists caught misbehaving. So from now onwards, the more temptation-prone members of the physics community know that if they gain fame and fortune by faking data, universities and comissioning bodies won't necessarily hush the thing up for them.

But for research published before 2000 (or perhaps before ~2005) ... be more careful. A certain number of the "jewels" in physics history aren't quite what they appear to be.